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Abstract—Low latency and low energy consumption are pre-
requisites for Internet of Vehicles (IoV) research; nevertheless,
consensus mechanisms of legacy blockchain applied to IoV
typically incur high delay and serious energy consumption due
to the computational puzzle. In this paper, Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) is used
to implement a novel reputation consensus mechanism for IoV
based on vehicle reputation values and traffic environment, which
can not only reduce the computational pressure but also ensure
the fairness of consensus. Firstly, the information transmission
vehicles (ITVs) would be picked following the reputation value
and its associated environmental data that makes the choice more
comprehensive and objective than other mechanisms. Secondly,
the authenticity of sharing information is determined with the
help of Bayesian inference, aided by the reputation value of
message reporting vehicles (MRVs). Finally, simulation results
show that the proposed scheme can improve consensus efficiency
by picking ITVs in a short time and avoid the spreading of false
information effectively in the IoV system.

Index Terms—Reputation consensus, blockchain, internet of
vehicles, TOPSIS, bayesian inference.

I. INTRODUCTION

The development of communication and the prevalence of
Internet of Things (IoT) technology allow vehicles in the net-
worked environment to use sensors and on-board units (OBU),
thereby realizing information interaction and sharing between
vehicle-to-everything (V2X). Such state-of-the-art technology
iterations can effectively boost vehicle collaboration, improve
traffic efficiency, and optimize the traffic environment [1].
However, due to the networking of vehicles and traffic devices,
some issues have been brought in, such as communication se-
curity, privacy protection, and system reliability, many current
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researches introduce blockchain to address these security is-
sues. Blockchain integrates cryptography, P2P networks, smart
contracts, consensus mechanisms, etc., and the combination
of these technologies creates its decentralization, distributed
storage, immutability, and high security, coinciding with the
security needs of IoV [2]. Yet, in the case of blockchain,
its performance is largely influenced by the performance of
its consensus mechanism [3]. Proof of Work (PoW), for
example, is a consensus mechanism traditionally designed
for digital currencies, where hashing problems are used as
a selective transaction validator [4], resulting in huge resource
consumption. This can lead to high energy consumption and
high waiting time during information transmission in PoW-
based IoV systems, which affects the timeliness of information
sharing, even if it can provide reliable sufficient and security.

To solve the incurring timeliness issue, two representative
solutions have emerged recently. On one hand, it is desired
that the computing is offloaded to cloud servers or edge
devices from vehicles through cloud computing [5] or edge
computing [6]. Despite the alleviation of computing loads
on vehicles, the resources and energy devoted to computing
are only transferred but not eliminated. Therefore, It can not
completely solve the problem of useless waste of resources
caused by PoW. On the other hand, PoW is replaced with the
non-compute-intensive consensus mechanism that leverages
lightweight blockchains to meet the needs of IoV [7]. Li et
al. [8] protected the user privacy in IoV with a Proof of Stake
(PoS) based blockchain, and the authors in [9] designed a
hybrid blockchain based on Delegated Proof of Stake (DPoS)
to solve the edge data sharing among vehicles by combining
federated learning. Both types of solutions mitigate the latency
and computing power to a certain extent. However, the terms
of their consensus remain in blockchain data such as tokens
and holding times and do not effectively use the data in IoV.

Blockchain-based IoV information sharing can only guaran-
tee the attribution and tamper-proof of information, but not the
authenticity of it. Focusing on the authenticity of information
in IoV, there exist two solutions: identity-based and data-
based judgment. In the former, the blockchain is leveraged
to identify and manage vehicles. In particular, there exists a
threat initiated by successfully authenticated vehicles, since
a successfully authenticated vehicle could communicate with
each other [10]. In the latter, the location [11] and reputation
[12] data are leveraged to justify the information authenticity
and circumvent the selfish behavior of vehicles in the traffic
environment. Although the latter does not focus on the identifi-
cation of vehicles, it could measure the information credibility
concerning the traffic environment and vehicle characteristics,
thus exhibiting higher accuracy in determining information
authenticity.

In this paper, we propose a TOPSIS based Proof of Rep-
utation (tPoR) consensus mechanism for information sharing
in IoV. When a traffic event occurs, its associated message
would be reported by surrounding vehicles, and the system
would evaluate the traffic conditions and reputation values
of surrounding vehicles to pick ITVs. After that, the ITVs
send the collected messages to neighboring Roadside Units
(RSU), then determining the information authenticity to judge
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Fig. 1. Scheme model.

whether or not to share the event information. Next, TOPSIS
is introduced in the consensus mechanism of IoV for multi-
objective-decision-making to identify ITVs and reach consen-
suses. Finally, the reputation value is incorporated into the
Bayesian inference as the main factor to improve the accuracy
of information authenticity discrimination.

In the rest, we present the architecture and formula model
in Section II, evaluate the effectiveness of our scheme through
simulation in Section III, and finally concludes the work with
future research in Section IV.

II. SYSTEM MODEL AND SCHEME DESCRIPTION

A. Overview of System Model

Inspired by [13], we implement tPoR with a hybrid
blockchain, consisting of the public blockchain in RSUs and
private subchains in vehicles, as shown in Fig. 1. Such
a scheme, compared with public chain, private chain, and
consortium chain, ensures the integrity of system informa-
tion while providing better privacy protection for users [14].
As one of consensus machinism to ensure the integrity of
a distributed network, Practical Byzantine Fault Tolerance
(PBFT) is applied to public chain, while tPoR is adopted for
private subchains. At the same time, subchains are dynamically
created and released depending on the traffic information
sharing requirements. Since cross-chain communication in this
scheme focuses on the request, response, transmission and
sharing of messages, there is no need to build a bridge module
for it. In particular, the vehicles are divided into two categories:
MRVs and ITVs, and the scheme is implemented through
two parts: preliminary consensus and information verification.
On one hand, the preliminary consensus is implemented in
the private subchains, involving the computing capability of
OBU, while tPoR is leveraged to reduce the computational
pressure. Besides, the reputation values are updated and stored
in the vehicle itself, and thus the ITVs could be figured
out quickly in combination with the traffic environment. On
the other hand, the information verification is inclined to be
executed in RSUs, since the message sets of same event can
be synchronized instantly, and the true information can be

Fig. 2. Consensus process of tPoR.

broadcast and shared after judgment with a public blockchain
deployed among RSUs.

B. tPoR for IoV

In the initial state, the system would calculate the initial
values of the vehicles’ reputation using the weighted evalua-
tion from the driver’s driving age (the longer the driving age,
the better the driving behavior), the vehicle’s age (the smaller
vehicle’s age represents the better condition), and the vehicle’s
violations within one year (the more violations represent the
poorer driving behavior). Meanwhile, each vehicle would get
a blockchain wallet involving a public key, a private key, and
a wallet address.

When a traffic event occurs, the vehicles and RSU within
its radius of r form a subchain. The process of information
sharing based on tPoR is illustrated in Fig. 2, and Algorithm
1 briefly describes the workflow of tPoR.

Algorithm 1 tPoR Consensus
Input: Ri, Si, DEi, DRi

Output: new Block
1: Assessment of input parameters with TOPSIS, while the

results are sorted from largest to smallest to obtain the
series C[i]

2: ITV = C[0]
3: while RSU received TX from ITV do
4: ITV collects messages from MRVs
5: end while
6: if RSU received TX from ITV then
7: RSU evaluates the information and broadcasts the

block, which is packed by the evaluation result and TX
8: end if
9: return new Block

The detailed steps of the proposed scheme are as follows:
Step 1 (ITVs Selection): Since RSUs are not necessarily

present near traffic events, this results in vehicles not being
able to communicate directly with them, and therefore ITVs
are needed for information transfer. tPoR could pick the best
ITVs based on four metrics, including reputation and traffic
environment data, more specifically:

1) Ri: The reputation value of vehicles in current status,
proportional to the message credibility.
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2) Si: The success rate of vehicles’ message transmission in
current status, proportional to the efficiency of message
transmission.

3) DEi: The distance between the location of vehicles and
the one of event occurred; the smaller distance, the more
accurate judgment can be made about the event.

4) DRi: The distance between the vehicle and nearest
RSU, proportional to the message exchange time.

For traffic event ei, assume there are n vehicles of MRV
vi in its region with radius r, and then we get the following
original evaluation matrix as

X =


x11 x12 x13 x14

...
...

...
...

xi1 xi2 xi3 xi4

...
...

...
...

xn1 xn2 xn3 xn4,

 , (1)

where xij is the j-th evaluation criterion of the i-th vehicle.
For fairness, the entropy of j-th attribute of vehicle could

be calculated as

ej = − 1

lnn

n∑
i=1

xij
n∑

i=1

xij

ln
xij
n∑

i=1

xij

∈ [0, 1]. (2)

Then, the entropy weight of the j-th vehicle’s evaluation
criterion can be calculated as

ωj =
1− ej

4∑
j=1

(1− ej)

. (3)

After that, the evaluation weighting matrix of candidate
vehicles turns out to be:

Q =


q11 q12 q13 q14

...
...

...
...

qi1 qi2 qi3 qi4
...

...
...

...
qn1 qn2 qn3 qn4

 , (4)

where

qij =
xij√
n∑

i=1

x2
ij

ωj .

Next, following TOPSIS, the positive-ideal solution Q+

and negative-ideal solution Q− of the alternatives could be
acquired as:

Q+ =
(
q+1 , q

+
2 , q

+
3 , q

+
4

)
=

{
max

i
qij | j ∈ [1, 4]

}
, (5)

and

Q− =
(
q−1 , q

−
2 , q

−
3 , q

−
4

)
=

{
min
i

qij | j ∈ [1, 4]
}
. (6)

Finally, the synthetic value of each candidate vehicle be-
comes evaluated as follows:

Ci =
D−

i

D+
i +D−

i

, (7)

where

D+
i =

√
4∑

j=1

(
qij − q+i

)2
, D−

i =

√
4∑

j=1

(
qij − q−i

)2
.

The candidate vehicles are ranked following the size of Ci,
and the one with the largest value is indexed as ITV vj .

Step 2 (Information Transmission): In particular, vi sends
the report message (encapsulated as the transaction TXrm) to
vj . After receiving TXrm, vj would process the transaction
and then send the delivery message (encapsulated as the
transaction TXdm) to the RSU. More precisely, TXrm and
TXdm are defined as follows:

TXrm :
{
IDi, Eventi, Ri,Sigski

[H(Eventi)]
}

TXdm :
{
IDi, IDj , Ri, Rj , Eventi, Tab,Sigskj

[H (TXrm)]
}
,

(8)
where IDi, Ri, and ski are the blockchain wallet address,

reputation value, and private key of vi, respectively. In par-
ticular, Tab is the opinion of vj on this event, which would
be marked when the massage reported by vi is judged to be
false, Siga(B) is a digital signature function utilizing a to sign
B, and H is a hash function.

Step 3 (Information Evaluation): If RSU collects sufficient
messages regarding an event within a predefined time, then
Bayesian inference is used to verify the event authenticity.
For the message set M j =

{
mj

1,m
j
2, . . . ,m

j
i , . . .

}
regarding

event ej , (9) is used to calculate the credibility fi of message
mi (that is uploaded by the vehicle vi with the reputation
value of Ri). The credibility set of all messages for ej can be
obtained as

F j =
{
f j
1 , f

j
2 , . . . , f

j
i , . . .

}
, (9)

with
f j
i = α · e−γdj

i−ηtii + βRi, (10)

where fi ∈ [0, 1], d is the distance between MRV vi and the
place where ej occurs, t is the time difference between the
i-th message and the first message received regarding ej , and
α, β, γ, η are preset parameters, for the adjustment of fi,
respectively.

Following Fj , (11) could be leveraged to infer the credibility
of information regarding ej based on Bayesian inference [15].
It can be judged that the information regarding ej is true only
when P ( ej

F j ) reaches the preset threshold, as follows:

P

(
ej

F j

)
=

P
(
ej
)
·

n∏
i=1

P
(

fj
i

ej

)
P (ej) ·

n∏
i=1

P
(

fj
i

ej

)
+ P

(
ej
)
·

n∏
i=1

P
(

fj
i

ej

) ,
(11)

where e is the opposing event of e, P (
fj
i

ej ) = f j
i , P (

fj
i

ej
) =

1 − f j
i , P ( ej

F j ) ∈ [0, 1], and P (ej) is the prior probability of
the event ej , respectively.
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Step 4 (Bonus-penalty): After evaluating the authenticity of
the information, RSU calculates and updates the reputation
values of all participants of the event. The reputation value of
vehicles sending correct messages is increased, and vice versa.
The MRVs’ reputation values associated with each message in
Mj can be computed as

Rnew =

1± fj
i

n∑
k=1

fj
k

Rold (12)

Meanwhile, (13) is utilized to incentivize the reputation
value of the ITVs as follows:

Rnew =

1 + minF j

n∑
k=1

fj
k

Rold . (13)

Step 5 (Block Generation): After the preceding procedures,
the subchain is released. The master RSU, which receives the
information packet, broadcasts the verified block as a prepare
packet to the public chain. The other consensus nodes will
broadcast the commit packet after receiving the prepare packet
with correct verification result, and the prepare packet number
is greater than 2f+1 (f is the maximum number of fault
tolerant nodes). Similarly, if a consensus node receives 2f+1
commit packets with correct verification, then it will submit
the confirmation message. Eventually, the new block, with
format in Fig. 3, will be recorded in the public chain.

Header

Body

Reputation Values

Message Set: 

Prehash
Block 

Height
Timestamp Signature

Judgment Result

1 2, , ,i

dm dm dm
TX TX TX, , ,i

dm dm dm
, , ,, , ,X TX

dm dm ddm dm d
, , ,, , ,

Fig. 3. The block format of public chain.

III. EXPERIMENTAL AND DISCUSSION

In order to validate the effectiveness and feasibility of the
proposed scheme, Golang language is used for performance
testing as well as OMNeT++ 6.0, SUMO 1.11.0, and Veins
5.2 co-simulation platforms are used to generate traffic sce-
narios. The configurations of critical parameters are listed in
Table I. This section is divided into four main parts. The

first part investigates the performance comparison of different
consensus algorithms and the effect of prior probability on
information accuracy judgment. The second section provides
the evaluation of tPoR in IoV. The third section studies the
computational complexity and communication complexity of
the scheme. Finally, the security analysis of the scheme is
discussed.

TABLE I
KEY PARAMETERS

ParametersParametersParameters ValuesValuesValues
Simulation Area 3 km ∗ 3.1 km

RSU Transmission Range 150 m
Vehicles Transmission Range 100 m

Simulation Time 500 s
Data Packet Size 138 bytes

α, β, γ, η 0.4, 0.006, 0.001, 0.001

A. Simulation of tPoR algorithm

In this part, to validate the superiority of tPoR, we test
the effectiveness of tPoR, PoS [8], and DPoS [9] consensus
algorithms by Golang language. The physical machine is
equipped with Intel i7-10710U@1.1GHz with 16 GB RAM
Windows 10 system. We simulate the consensus process by
treating vehicles as nodes in the blockchain, and the number
of nodes in the experiment ranges from 20 to 200; different
numbers of nodes reach consensus, and the program outputs
the correct transaction information, implying that a consensus
is reached among similar numbers of vehicles in the IoV.

First, we test the consensus time of three consensus algo-
rithms, 600 experimental tests are conducted and the average
value of every twenty data is used as the experimental data,
thus guaranteeing the reliability of the experimental data.
As shown in Fig. 4, the result shows that the consensus
time of tPoR is significantly lower than others, and its time
consumption can be reduced by up to 53.38% and 61.99%
compared with DPoS and PoS, respectively; also, as the
number of nodes grows, tPoR rises less significantly than the
other two, thus ensuring low latency and high efficiency of
information transfer in the IoV environment. The main reason
for the above results is that tPoS utilizes a multi-objective
decision technique, TOPSIS, that completely replaces the hash
computation in PoS and DPoS, and thus the consensus time
has been drastically reduced.
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Fig. 4. Consensus time comparison.
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Fig. 5. Throughput comparison.
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Next, we compare the throughput of transaction, and test the
Transaction Per Second (TPS) as illustrated in Fig. 5. The TPS
decreases as the number of nodes increases, whereas the ad-
vantage of tPoR is still obvious, with throughput improvements
of up to 50.93% and 59.65% over the other two algorithms,
respectively. The main reason is that the consensus time of
each transaction in tPoR is much lower than the other two, and
thus tPoR can complete more transactions per unit of time.

B. Simulation of information evaluation

In this part, we test the ability of Bayesian inference-based
information detection under reputation endorsement. The prior
probability in Bayesian inference is usually an uncertain value
that can be derived from previous experience, or judged and
selected based on practical applications when lacking neces-
sary information [16]. To achieve more accurate information
detection, three prior probability values are picked and tested
separately, with results shown in Fig. 6. As the percentage of
false messages increases, the probability of true information
under the three a priori probabilities show the same trend.
All three curves almost overlap, with the difference only at
the 50% false information, where, the inferred results with a
priori probabilities of 0.5 and 0.9 are approximately 0 and 1,
respectively, and the pre-determined probability of 0.5 would
misinterpret in some cases, thus a priori probability of 0.1
is more favorable. More information is reported by vehicles
with large reputation values leading to a probability of 0.635
of true information at this time, and the proposed reputation-
based evaluation mechanism identifies this information as true.
Benefiting from the influence of prior knowledge on decision-
making, in the real traffic scenario, the prior probability can
be calculated by counting the frequency of traffic events (e.g.
traffic jams, tailgating.) occurring at a certain place during
a certain period, contributing to the subsequent information
evaluation with Bayesian inference.

C. Simulation of proposed scheme in traffic communication

In this part, to verify the impact of tPoR-based blockchain
on traffic communication, the proposed scheme is evaluated
using the IoV simulation platform mentioned before. The
physical machine is equipped with Intel i5-8500@3GHz with
8 GB RAM Ubuntu 20.04 system. A real map of the city of
Erlangen, Germany is used to simulating road traffic, which
was shipped by Veins, as shown in Fig. 7. We test the
variation of Average Packet Loss Rate (APLR) and Average
Communication Delay (ACD) for 20, 40, and 60 vehicles at
different speeds with proposed scheme, respectively.

In this experiment, APLR is the average of the ratio of the
difference between the total number of packets sent by MRVs
and the total number of packets received by ITVs to the total
number of packets received by ITVs during the simulation
time. Fig. 8 depicts the impact of vehicle speed and number on
APLR. The APLR decreases progressively with vehicle speed
for a constant number of vehicles. The transmission of packets
is higher during lower vehicle speed levels since the duration
of MRVs and ITVs within the communication range is longer,
and packet queuing time exceeds the threshold value leading

Fig. 7. Traffic network and IoV scenario in simulations.

to packet loss, so the packet loss rate is higher. In the case
of higher speed levels, the transmission of packets is lower,
and the communicating parties stay within the communication
range of each other for less time, so the packet loss rate is also
lower. With constant vehicle speed, APLR is also in lockstep
with the number of vehicles. As the number of vehicles
rises, more packets are generated in the communication range,
causing the message collision and queuing delay increases,
which results in more packets being dropped, and the packet
loss rate becoming larger.

We define ACD as the average of the difference between the
time to report messages from MRVs and the time for the set of
messages to reach the RSU after the consensus process. Fig.
9 depicts the impact of vehicle speed and number on ACD.
Under a certain number of vehicles, the decrease in ACD is
accompanied by an increase in vehicle speed. The change of
vehicles within the communication range of ITVs and RSUs
accelerates due to the acceleration of vehicle speed, which
leads to the decrease in the number of packets received by
both and the decrease in packet queuing delay. Meanwhile, the
reduction of ACD slows down during the change of vehicle
speed from 80 km/h to 120 km/h. This is because as the vehicle
speed increases, the distance between communication parties
increases, and the communication time delay increases. The
reason for the increase of ACD with the number of vehicles
at constant speed is the increase in packet queuing delay due
to the increase in packets.

20 40 60 80 100 120

Speed of Vehicles(km/h)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
v
er

ag
e 

P
ac

k
et

 L
o
ss

 R
at

e

20 Vehicles

40 Vehicles

60 Vehicles

Fig. 8. APLR comparison.

20 40 60 80 100 120

Speed of Vehicles(km/h)

0

5

10

15

20

25

A
v
er

ag
e 

C
o
m

m
u
n
ic

at
io

n
 D

el
ay

(m
s) 20 Vehicles

40 Vehicles

60 Vehicles

Fig. 9. ACD comparison.

D. Communication and computational complexity

The communication and computational complexity of tPoR
are shown in Table II, where n represents the number of
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vehicles participating in the consensus. First, the communi-
cation complexity indicates the number of communications
between the transmitter and the receiver [3]. In particular, in
the Information transmission, from the ITV’s perspective, it
first receives messages from the remaining n − 1 vehicles,
and then sends the packaged messages to the RSU, thus
with the communication complexity of O(n). In the Bonus-
penalty, from the RSU’s perspective, it needs to synchronize
the updated values of reputation to each vehicle involved in
the information sharing and consensus, and thus the commu-
nication complexity is O(n). More precisely, ITVs selection
and Information evaluation do not involve the communication
process. Second, the computational complexity mainly arises
during the ITVs’ selection, the computation on the 4-column
evaluation matrix leads to the complexity of O(4n). More
precisely, the complexity of both Information evaluation and
Bonus-penalty is O(n), since each vehicle has to be traversed.
There exists no computation involved in the information
transmission, so the complexity is 0.

TABLE II
COMMUNICATION AND COMPUTATIONAL COMPLEXITY

Communication
complexity

Communication
complexity

Communication
complexity

computational
complexity

computational
complexity

computational
complexity

ITVs selection – O(4n)
Information transmission O(n) –
Information evaluation – O(n)

Bonus-penalty O(n) O(n)

E. Security Analysis

In this part, we we analyze the proposed scheme under
several common malicious attacks.

1) Double-spending attack: In the proposed scheme, the
transaction validators would be picked by tPoR integrating
with the traffic environment and the reputation value of
vehicles, and thus it is almost impossible for two blocks to
have the same attributes simultaneously, thereby resolving the
double-spending attack.

2) Sybil attack: In the proposed scheme, each vehicle has to
be authenticated when entering the system, and a blockchain
wallet is issued for it, with the wallet address as its unique
communication id. In the consensus process, vehicles with
higher reputation values are more likely to become transaction
validators, and IoV has high mobility, ensuring the randomness
of consensus process, and thus eliminating Sybil attack.

3) Collusion attack: Firstly, most ITVs have high rep-
utation values, and collusion with MRVs can be avoided
significantly. Secondly, if a group wants to launch a collision
attack successfully, then it has to ensure that all vehicles in the
group have high reputation value and appear in the same place
simultaneously. Also, it needs to ensure that no other vehicles
with high reputation values could report messages, which is
very challenging to implement in the IoV with heavy traffic.

4) Bad-mouthing attack or False-praise attack: In the pro-
posed scheme, the management of all nodes’ reputation values
is realized by the system through the judgment feedback of
information, and there is no malicious comment among nodes.
Therefore, tPoR can resist such attacks.

5) Self-promoting attack: In the proposed scheme, the rep-
utation of message set would be considered in the information
verification phase, thus hardly posing a threat to this scheme.

IV. CONCLUSION

In this paper, a novel consensus mechanism tPoR is pro-
posed for the information sharing in IoV, which could im-
prove the consensus efficiency and randomness by integrating
TOPSIS (to pick transaction validators) with various traffic
environment factors. Meanwhile, the authenticity of the shar-
ing information is judged based on the vehicles’ reputation
value. This paper also provides an idea for the application of
blockchain in other fields, which uses TOPSIS to combine data
from scenarios to achieve lightweight consensus. In the future,
more realistic and complex traffic scenarios will be studied to
verify the applicability of tPoR, and the privacy protection of
the vehicle will be considered more comprehensively.

REFERENCES

[1] J. Wang, C. Jiang, Z. Han, Y. Ren, and L. Hanzo, “Internet of vehicles:
Sensing-aided transportation information collection and diffusion,” IEEE
Trans. Veh. Technol., vol. 67, no. 5, p. 13, 2018.

[2] M. B. Mollah, J. Zhao, D. Niyato, Y. L. Guan, C. Yuen, S. Sun, K.-Y.
Lam, and L. H. Koh, “Blockchain for the internet of vehicles towards
intelligent transportation systems: A survey,” IEEE Internet Things J.,
vol. 8, no. 6, pp. 4157–4185, 2021.

[3] L. Zhang, H. Xu, O. Onireti, M. A. Imran, and B. Cao, “How much com-
munication resource is needed to run a wireless blockchain network?”
IEEE Network, vol. 36, no. 1, pp. 128–135, 2022.

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” [Online].
Available: https://bitcoin.org/bitcoin.pdf, 2008.

[5] W. Junfei, J. Li, Z. Gao, Z. Han, C. Qiu, and X. Wang, “Resource
management and pricing for cloud computing based mobile blockchain
with pooling,” IEEE Trans. Cloud Comput., 2021.

[6] S. Guo, Y. Dai, S. Guo, X. Qiu, and F. Qi, “Blockchain meets edge
computing: Stackelberg game and double auction based task offloading
for mobile blockchain,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp.
5549–5561, 2020.

[7] Z. Zheng, J. Pan, and L. Cai, “Lightweight blockchain consensus
protocols for vehicular social networks,” IEEE Trans. Veh. Technol.,
vol. 69, no. 6, pp. 5736–5748, 2020.

[8] M. Li, L. Zhu, and X. Lin, “Efficient and privacy-preserving carpool-
ing using blockchain-assisted vehicular fog computing,” IEEE Internet
Things J., vol. 6, no. 3, pp. 4573–4584, 2019.

[9] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Blockchain
empowered asynchronous federated learning for secure data sharing in
internet of vehicles,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp.
4298–4311, 2020.

[10] J. Cui, F. Ouyang, Z. Ying, L. Wei, and H. Zhong, “Secure and efficient
data sharing among vehicles based on consortium blockchain,” IEEE
Trans. Intell. Transp. Syst., pp. 1–11, 2021.

[11] Y. Song, Y. Fu, F. R. Yu, and L. Zhou, “Blockchain-enabled internet of
vehicles with cooperative positioning: A deep neural network approach,”
IEEE Internet Things J., vol. 7, no. 4, pp. 3485–3498, 2020.

[12] C. Jiang, H. Zhang, Z. Han, Y. Ren, V. C. M. Leung, and L. Hanzo,
“Information-sharing outage-probability analysis of vehicular networks,”
IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 9479–9492, 2016.

[13] S. Zhu, Z. Cai, H. Hu, Y. Li, and W. Li, “zkcrowd: A hybrid blockchain-
based crowdsourcing platform,” IEEE Trans. Ind. Inf., vol. 16, no. 6, pp.
4196–4205, 2020.

[14] H. Desai, M. Kantarcioglu, and L. Kagal, “A hybrid blockchain archi-
tecture for privacy-enabled and accountable auctions,” in Proc. IEEE
Int. Conf. Blockchain, Jul. 2019, pp. 34–43.

[15] M. Raya, P. Papadimitratos, V. D. Gligor, and J.-P. Hubaux, “On data-
centric trust establishment in ephemeral ad hoc networks,” in Proc. IEEE
INFOCOM, Apr. 2008, pp. 1238–1246.

[16] B. P. Carlin and T. A. Louis, Bayesian methods for data analysis. CRC
Press, 2008.

 https://bitcoin.org/bitcoin.pdf

	Introduction
	System Model and Scheme Description
	Overview of System Model
	tPoR for IoV

	Experimental And Discussion
	Simulation of tPoR algorithm
	Simulation of information evaluation
	Simulation of proposed scheme in traffic communication
	Communication and computational complexity
	Security Analysis
	Double-spending attack
	Sybil attack
	Collusion attack
	Bad-mouthing attack or False-praise attack
	Self-promoting attack


	Conclusion
	References

